
Results

MSD, OC Multiplication

RUNTIME RECONFIGURABLE DSP UNIT USING
ONE’S COMPLEMENT AND MINIMUM SIGNED DIGIT

Travis Manderson and Laurence Turner, University of Calgary, Alberta, Canada

Abstract
	 A runtime reconfigurable Digital Signal Processing (DSP) unit using one’s complement data
and a Minimum Signed Digit (MSD) multiplier is shown. The MSD multiplier changes the partial
product shift-and-add operations to shift-and-add/subtract operations and reduces the number
of partial product terms by half, decreasing the size and increasing the speed of the multiplier.
	
	 One’s complement data allows the multiplication by negative one (used in the
subtract operation) to be a bitwise complement operation. Using a carry-save architecture, the
propagation delay of an adder to add the carry-out bits produced in one’s complement addition
is eliminated. Taking advantage of the deterministic nature of the desired DSP algorithm, the
runtime reconfiguration of the multiplier can be pipelined to eliminate an added set-up state.
	
	 The described DSP unit compared to a DSP unit using a conventional multipli-
er is shown to be 20% faster and 30% smaller for a 32-bit coefficient and using Xilinx
Field Programmable Gate Arrays (FPGAs) with 6-input Look-Up Tables (LUTs).

OverviewOverview

•	Defined as a set of {0,1,1} digits where 1=-1
•	Guarantees at most one non-zero bit for each consecutive pair of bits in the MSD coefficient
•	Reduces the number of partial product terms in a multiplier by half	

- Decreases the size and increases the speed of the multiplier

•	The negative of a number is its bitwise complement
•	Left shift operations are end-around-carry
•	Any carry-out bit from addition is added back to the LSB

One’s Complement

MSD, One’s Complement Multiplication

Minimum Signed Digit

8B

X
-1,0,+1

X
-1,0,+1

X
-1,0,+1

X
-1,0,+1

D 8

+

<<

<<

<<

<<

0,1

2,3

4,5

6,7

16 P2

2

2

2

Each pair of MSD coefficients is
used to steer the data through
a -1, 0 or +1 multiplier

M =
N−1∑
i=0

mi2
i where mi ⊂ {0, 1, 1̄}, 1̄ = −1

Preparing the MSD Coefficient:
93 = 101̄001̄01Determine MSD representation of coefficient (ie. 93):

Break into pairs of digits: 10|1̄0|01̄|01

Define C as the MSD magnitude:

Define D as the justification of every pair of digits (0
or 1 when both digits are 0):

Define S as the sign of the non-zero digit (1 when the
digit is -1):

C = 10100101

D = 1100

S = 0110

MSD, OC Multiplier

8
0

1

B
0

1<<1

0

1

0

9

S(0) 0 1

C(0) C(1)

D(0)

16

16

16

D(0)C(1)

P
A
B S

Cout
Adder

Cin

A
B S

Cout
Adder

Cin

A
B S

Cout
Adder

Cin

D QReg.

D QReg.

D QReg.

IN OUTSign
Extender

MSBB(7)

8
0

1

B
0

1<<3

0

1

0

11

S(1) 0 1

C(2) C(3)

D(1)

D(1)C(3)

IN OUTSign
Extender

MSBB(7)

<<2

8
0

1

B
0

1<<5

0

1

0

13

S(2) 0 1

C(4) C(5)

D(2)

D(2)C(5)

IN OUTSign
Extender

MSBB(7)

<<4

8
0

1

B
0

1<<7

0

1

0

15

S(3) 0 1

C(6) C(7)

D(3)

D(3)C(7)

IN OUTSign
Extender

MSBB(7)

<<6

16

16

16

16

end-around-carry
carry-save register

bitwise complement
when negative

multiply by 0 when
coefficient bit is ‘0’

select the left or right bit of
the MSD coefficient pair

left-shift (multiply) by the
MSD coefficient bit position

8x8 MSD Multiplier

•	B is the input data to the multiplier (ie. a filter state)
•	D can be derrived directly from C: D(n) = C(n*2 + 1)
•	C and S are stored in memory and represent the multiplier coefficient

DSP Unit Architecture

01

STATE
MEMORY

MSD-Coded
Coefficient
MEMORY

Magnitude (C)

State

INPUT

Accumulate
Register

+ 0

1

+

Carry Outs

0

OUTPUT

State Update

One’s to Two’s
Complement

Converter

Two’s to One’s
Complement

Converter

Instruction
MEMORY

0
1

Sign (S)

feedback

load enable

registerregister

subtract

Signal
Quantization[]

MSD, OC
Multiplier

when the DSP instruction is subtract, the sign
bits of the MSD coefficient are complemented

register stores the
last carry-out bit

adder only, the subtract is implemented
by complementing the coefficient sign bits

add the last carry-out bits following
any multiply-accumulate operations

accumulate section
is full finite precision

Carry Out

Sum

Product

•	Multiplier is full finite precision
•	The multiplier coefficient (sign and magnitude) is pipelined so there is no set-up

instruction to reconfigure the multiplier

DSP Unit

MSD Coefficient (ie. 93): C = 10100101 D = 1100 S = 0110

Input Data (ie. -127) in One’s Complement: B = 10000000

8
0

1

B
0

1<<5

0

1

0

13

S(2) 0 1

C(4) C(5)

D(2)

D(2)C(5)

IN OUTSign
Extender

MSBB(7)

<<4

16

Single MSD Multiplier Stage

PP (i) = B ∗ [S(i)? − 1 : 1] ∗ C(2 ∗ i + D(i)) ∗ 22∗i+D(i)

•	Partial Product of a single MSD multiplier stage:

•	Product of the MSD multiplier:
i=N

2∑
i=0

PP (i) =

i=N
2∑

i=0

B ∗ [S(i)? − 1 : 1] ∗ C(2 ∗ i + D(i)) ∗ 22∗i+D(i)

•	Partial Product Summation Example:

B ∗ [S(0)? − 1 : 1] ∗ C(0 + D(0)) ∗ 20+D(0)

+B ∗ [S(1)? − 1 : 1] ∗ C(2 + D(1)) ∗ 22+D(1)

+B ∗ [S(2)? − 1 : 1] ∗ C(4 + D(2)) ∗ 24+D(2)

+B ∗ [S(3)? − 1 : 1] ∗ C(6 + D(3)) ∗ 26+D(3)

B*1*1*20

+ B*-1*1*22

+ B*-1*1*25

+ B*1*1*27

= = = B*93
B*1

+ B*-4
+ B*-32
+ B*128

PP (0)
+ PP (1)
+ PP (2)
+ PP (3)

10000000*1*1*20

+ 10000000*-1*1*22

+ 10000000*-1*1*25

+ 10000000*1*1*27

Product (P) = =
1111111110000000

+ 0000000111111100
+ 0000111111100000
+ 1100000001111111

=

1111111110000000
+ 0000000111111100
10000000101111100

0000111111100000
+ 1100000001111111

1101000001011111

0000000101111100
+ 1101000001011111

1101000111011011

1101000111011011
+ 1

1101000111011100

1

2

3

4

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1 1 1

sign bits

sign bits

Adder Tree

Carry-Out Addition

So, P = 1101000111011100 = -11811

Synthesis Results using Xiling ISE

Xilinx FPGA
MSD, One’s

Complement
Two’s Complement
LUT Ripple-Carry

Multiplier

Using DSP hard IP
(DSP48)

LUT’s Latency LUT’s Latency LUT’s Latency
Spartan-3A (4-input LUT’s) 1902 19.126 ns 1307 21.077 ns 160 21.630 ns

Virtex-5 (6-input LUT’s) 1186 7.650 ns 1743 9.633 ns 160 10.440 ns

Up to 20% faster than a LUT based multiplier

Up to 30% smaller than a LUT based multiplier
Marginally faster than the DSP48 slice found in select Xilinx FPGAs
MSD One’s Complement DSP Unit could be used in an ASIC

•	Addition of Partial Products:

Multiplication of One’s Complement Number Example:

